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The coherence time, and thus sensitivity, of trapped-atom interferometers that use nondegenerate gases are 
limited by the collisions between the atoms. An analytic model that describes the effects of collisions between 
atoms in an interferometer is developed. It is then applied to an interferometer using a harmonically trapped 
nondegenerate atomic gas that is manipulated with a single set of standing wave laser pulses. The model is 
used to find the optimal operating conditions of the interferometer and direct Monte Carlo simulation of the 
interferometer is used to verify the analytic model. 
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I. INTRODUCTION 

To date cold atom interferometers have demonstrated ro- 
tation sensitivities comparable to ring laser and mechanical 
gyroscopes [1]. Several atom interferometer schemes have 
been realized, and thus far free space fountain and beam 
configurations, that utilize light pulses to manipulate the at- 
oms, have demonstrated the greatest sensitivities [1-3]. 
While the lack of external potential reduces systematic er- 
rors, atom interferometry in free space is limited by accel- 
eration due to gravity. In particular, the precision of an inter- 
ferometer is directly proportional to the interrogation time 
and in free space this time is limited by the size of the 
vacuum chamber. In the most sensitive free space atom in- 
terferometers, the atomic clouds travel up to 10 meters [21. 
The large scale of free space interferometers limits their ap- 
plications. 

There is currently a great effort being made to reduce the 
size of atom interferometers while simultaneously increasing 
their sensitivity. One straightforward way to achieve this 
goal is to develop interferometers that trap the atoms in an 
external potential for the duration of the interferometer cycle. 
The external potential prevents the atoms from falling due to 
gravity, and keeps the atomic gas from expanding in the 
vacuum chamber. As a result, the interferometer cycle time is 
not as limited by the size of the chamber. 

Several groups have built trapped-atom interferometers 
using atomic gases that are both above and below the recoil 
temperature [4-9]. To date, all interferometers that use gases 
below the recoil temperature have utilized atoms in a nearly 
pure Bose-Einstein condensate (BEC). 

If the gas is cooled below the recoil temperature and is 
split using a laser pulse, a large relative separation between 
each arm of the interferometer can be achieved [6]. By ex- 
posing the atoms in each arm to a different environment, 
precision measurements of localized phenomena can be per- 
formed. For example, the ac Stark shift in 87Rb was recently 
measured by exposing the atoms in one arm of an interfer- 
ometer to laser light [10]. 

*afrl.rvb.pa@hanscom.af.mil 

In some applications, such as the sensing of rotations and 
accelerations, cloud separation is not necessary and interfer- 
ometers that use nondegenerate source are sufficient. These 
sources can be produced by laser cooling alone. Additionally, 
nondegenerate atomic gases have a much lower density com- 
pared to a Bose-Einstein condensate (BEC) and therefore 
experience a weaker mean-field potential. The mean-field po- 
tential directly couples number uncertainty into phase uncer- 
tainty via number-dependent phase diffusion [8.11-13]. One 
advantage of working with laser cooled gases is that dephas- 
ing due to number fluctuations is ameliorated. 

Besides the elimination of mean-field effects, atom inter- 
ferometers that use laser cooled atomic gases are less sensi- 
tive to heating due to imperfections in the confining potential 
than a BEC. Atoms in a pure BEC experience no momentum 
changing collisions with other atoms in the same mode. 
Therefore, an interferometer that uses a pure BEC will expe- 
rience little decoherence due to collisions. However, if a 
BEC is heated, atoms will leave the condensate and will 
experience an increase in the collision frequency. As a result, 
the decoherence rate will increase with temperature. On the 
other hand, if the interferometer uses a laser cooled gas with 
a temperature much greater than the BEC transition tempera- 
ture, the density will decrease as the temperature increases 
and the decoherence rate will decrease if the gas is inadvert- 
ently heated. 

Several different methods for building atom interferom- 
eters using laser cooled gases have been developed [14] and 
time-domain atom interferometers that use a single internal 
quantum state [15] lend themselves naturally for use with 
trapped atomic gases. This type of interferometer uses a se- 
ries of optical standing waves to manipulate the external 
states of the atoms in the cloud. The interferometric cycle 
begins by loading an atomic cloud in a magneto-optical trap. 
The trap is switched off and the atomic cloud begins to fall 
due to gravity. At the time t=0, the cloud is illuminated with 
a short pulse from the standing wave laser field. Shortly after 
the pulse, the cloud has a density modulation with a period 
of \/2, where \ is the wavelength of the laser field. The 
density modulation then disappears because of the thermal 
motion of the atoms in the cloud. At the time t=T the gas is 
illuminated with a second pulse. Due to the Talbot-Lau ef- 
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feet, there is an echo of the density modulation at the times 
t=nT, for integers /i3=2. If the atomic cloud experiences a 
nonuniform potential during the interferometer cycle, the 
density echoes will be shifted relative to the initial modula- 
tion. The shift in the phase of the modulation can be deter- 
mined by reflecting a probe pulse from a single laser beam 
off of the echo. The phase of the reflected probe pulse is 
directly proportional to the phase shift in the density modu- 
lation. By interfering the reflected probe pulse with a refer- 
ence beam, the interferometer's signal can be read. 

Recently, a trapped time domain atom interferometer was 
built by the group at Harvard [9], This interferometer used an 
atom wave guide to confine the atoms in the perpendicular 
directions while allowing them to freely propagate along the 
parallel direction. A series of standing wave laser pulses were 
applied to the atoms, such that the wave vectors of the lasers 
pointed along the free direction of the guide. The Harvard 
group demonstrated that it is possible to electronically move 
the wave guide back and forth perpendicular to the free di- 
rection of the wave guide so that the arms of the interferom- 
eter enclose an area, making the interferometer sensitive to 
rotations [9], 

A major difficulty with all trapped-atom interferometers 
that use optical pulses is that the residual potential along the 
guide causes decoherence [16-19]. The groups that have 
built BEC based interferometers have mitigated the decoher- 
ence by either using a double reflection geometry or using 
the classical turning points of the residual potential to reflect 
the atoms. The Harvard group has reduced the effects of the 
residual potential by using an interferometric cycle with sev- 
eral laser pulses [20]. Although this multipulse scheme 
greatly increases the coherence time of the interferometer, it 
also reduces the number of atoms participating as well as 
reducing the area enclosed by the interferometer. 

We are currently developing a trapped-atom gyroscope 
that uses a laser cooled atomic gas and avoids decoherence 
due to the residual potential by using classical turning points 
to reflect the atoms. Rather than utilizing the Talbot-Lau ef- 
fect, the density modulation will echo twice every oscillation 
of the atoms in the parallel direction. Figure 1 is a schematic 
of the interferometer cycle, (a) Initially, a laser cooled atomic 
gas is loaded into a cigar-shaped trap. The trap in the per- 
pendicular direction is created with the upper most horizon- 
tal wire plus a uniform bias field. The relatively weak trap in 
the parallel direction is created using vertical wires that are 
not shown, (b) At the beginning of the interferometer cycle 
f=0, the atomic cloud is illuminated with a standing wave 
laser field. The atoms are accelerated towards the nodes of 
the laser field, (c) Immediately after the laser pulse, the at- 
oms move towards the location of the nodes and density 
modulation appears across the cloud, (d) The density modu- 
lation disappears due to the thermal motion of the atoms. 
Simultaneously the trap is moved downwards by cycling the 
current in the wires. If the interferometer is rotating about the 
plane of the paper with frequency fl, the Coriolis force will 
accelerate the cloud in the parallel direction, (e) The cycling 
of the currents in the wires is timed so that the trap is above 
the bottom wire at one-half a period of the parallel trap t 
= 772, where T is the trap period in the parallel direction. 
Near t=TI2 there in an echo of the density modulation 

a) [el 
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FIG. 1. (Color online) A schematic of the interferometer cycle. 
(a) The cold gas is loaded into a cigar-shaped trap, created with the 
upper most horizontal wire, (b) The atomic cloud is illuminated 
with a standing wave laser field, (c) After the laser pulse, a density 
modulation appears across the cloud, (d) The density modulation 
disappears and the trap is moved downwards by cycling the current 
in the wires, (e) The trap is above the bottom wire at a half period 
of the parallel trap and the density modulation reappears across the 
cloud. (0 The trap is moved upward and the density modulation 
disappears, (g) The trap reaches the top wire at one trap period of 
the parallel trap and the density modulation reappears for a second 
time, (h) A probe pulse is reflected off of the cloud. 

across the cloud, (f) The trap is moved upward. The Coriolis 
force decelerates the cloud resulting in a displacement of the 
cloud that is directly proportional to the rotation frequency of 
the interferometer, (g) At the time t=T, the trap returns to the 
top wire and there is a second echo of the density modula- 
tion. The modulation is shifted due to the rotation of the 
interferometer. The cycle (c) through (g) can be repeated 
many times. Since the oscillating Coriolis force is resonant 
with the parallel trap frequency, the shift in the displacement 
of the cloud will increase after each cycle, (h) After n cycles, 
the displacement of the cloud is precisely measured by re- 
flecting a probe beam off of the density modulation and in- 
terfering the reflected light with a reference beam. 

The probe pulse only interacts strongly with the cloud 
when there is a density modulation across the cloud. As a 
result, the probe pulse can be longer than the duration of the 
modulation echo. Small fluctuations in the trap frequency 
can be measured simultaneously with the phase shift and 
using thermal atoms avoids the critical timing needed when a 
BEC is used [16,18,21]. It may prove possible to measure the 
interference signal more than once in any given experiment. 
As a result, it might be possible to split the atoms once, and 
measure the rotation frequency several times as the cloud 
oscillates in the trap. 

During interferometer cycle, collisions between the 
trapped atoms will bring the gas back to equilibrium, causing 
a reduction in the amplitude of the density modulation. Thus, 
the amplitude of the reflected probe pulse will degrade with 
time. The upper limit on the interferometer cycle time and 
the devices sensitivity can be determined by analyzing the 
effects that collisions have between the atoms in the trap. 
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In this paper, we present a theoretical model for our inter- 
ferometer. In Sec. II, we present an analytic model for the 
amplitude of the reflected probe pulse including the rotation 
of the interferometer and the effects of collisions between the 
atoms in the gas. In Sec. Ill the analytic model will be used 
to estimate the minimum value of the trap frequency in the 
perpendicular direction, the optimal temperature of the gas, 
and the optimal number of atoms to use in our upcoming 
experiment and we compare the results of our analytic model 
with a Direct simulation Monte Carlo code. Finally, in Sec. 
IV conclusions will be presented. 

II. FORMULATION OF THE PROBLEM 

The dynamics of a dilute atomic gas above BEC phase 
transition temperature is governed by the quantum Boltz- 
mann equation [22] 

dt' it. 
[/yeft,p] = /(P). (i) 

where p is the single particle density operator, Heff is the 
effective single particle Hamiltonian, and /(p) is the collision 
integral. The effective Hamiltonian for an atom in a rotating 
trap and standing wave laser field is 

H.« = — + V(r) + hX cos(2Jfc, • r) - ft • (r X p) + 2U„n(r), 
2m 

(2) 

where in is the atomic mass, V is the external trapping po- 
tential, x characterizes the strength of the standing wave la- 
ser, k) is the wave vector of the laser field, and ft is the 
vector that points along the axes of rotation with the magni- 
tude of the angular rotation frequency. The final term in Eq. 
(2) is the mean-field potential where U^=Aitfi2aJm charac- 
terizes strength of the atom-atom interactions, a, is the 
.v-wave scattering length, and n is the number density of the 
atomic gas. Note that the mean-field potential for a noncon- 
densed gas is a factor of 2 larger than for a BEC with the 
same density. 

It is convenient to recast the single particle density opera- 
tor in the Wigner function representation which is defined as 

f(r,p) = -^ j d'r'(r-r'\p\r + r')e2ir''"h. (3) 

where \r) are the eigenstates of the coordinate operator. The 
Wigner function can be interpreted as the probability density 
of finding an atom at the coordinate r with momentum p. 

It will be assumed that the standing wave laser pulse is in 
the Kapitza-Dirac regime. It is sufficiently short that both the 
free evolution of the gas and the collision integral may be 
neglected, i.e., the atoms do not move and experience no 
collisions while the laser beams are on. The pulse is in this 
regime when 

\ I 

V ' V 
(4) 

where r„ is the length of the pulse, \ is the wavelength of the 
laser beams, u is the average speed of the atoms in the gas. 

and v is the average collision frequency. When Eq. (4) is 
fulfilled the dynamics of the atomic gas can be separated into 
two parts: The dynamics when the laser beams are on and the 
dynamics when the laser beams are off. 

In what follows the dimensionless coordinate r' = 2kp, the 
dimensionless momentum p' =p/2hkh and the dimensionless 
time t'=t/t0 where tQ=m/4hkj will be used. For S7Rb, the 
characteristic time is r0=5.3 ps. Substituting Eqs. (3) and (2) 
into Eq. (I) the dimensionless equation of motion for the 
Wigner function /, when the laser beams are on, is 

-f(r,p,t) = x sin(2*)[/(r,p -k,/2) -f(r.p + k,/2)].   (5) 
at 

where £,'=£,/&, is the direction of the standing wave laser 
field, x' = toX 's me dimensionless laser strength, and all of 
the primes have been dropped. Similarly, the dimensionless 
equation of motion for the Wigner function /. when the laser 
beams are off, is 

-f(r,p.t) = -p— + —--• at IT       or   tip 
ft|r X — +p X — 

at op 
+ /,., 

(6) 

where ft' = r0ft, y'a=2kiya and once again all the primes have 
been dropped. Our short term goal is to measure the rotation 
of the Earth. For 87Rb the rotation frequency of the Earth in 
our dimensionless units is ft£=4X 10"'°. When the gas is in 
thermodynamic equilibrium, the dimensionless temperature 
is T' = TIATR, where TR=fi2kj/mkB is the one photon recoil 
temperature. For 87Rb, the recoil temperature is TR 

= 350 nK. 
The dimensionless effective potential is 

VM=V+2gn, (7) 

where V' = t0V/fi is the dimensionless trapping potential, n' 
= &k]n is the dimensionless density, and g=Siraski is the di- 
mensionless mean-field strength. For 87Rb the dimensionless 
mean-field strength is g ~ 1. 

The length scale L of density changes in a magnetically 
trapped atomic gas is typically much larger than the atoms 
v-wave scattering length as, i.e., aslL< 1. In this limit, the 
collision integral becomes independent of the potential. 
Since the atomic gas is above the BEC transition tempera- 
ture, no single quantum state has a macroscopic population 
and Bose enhanced scattering can be neglected. The dimen- 
sionless collision integral can be approximated with the clas- 
sical collision integral [22] 

/COH=7- I d'p,dn\pi-p\\f(r.p,)f(r,p2)-Ar.p,)f(r,p)l 
4n J 

(8) 

where o-=32tra2k] is the dimensionless collision cross sec- 
Rb the dimensionless scattering cross section is tion. For 

cr=0.2. 
Before the laser pulse is applied, the gas is in thermody- 

namic equilibrium and it will be assumed that the laser pulse 
is sufficiently weak that the gas is always close to equilib- 
rium. The Wigner function / can be written as 
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f = fo+Sf, (9) 

where fa is the equilibrium Wigner function and Sf is the 
disturbance caused by the laser pulse. When the disturbance 
is much smaller than the equilibrium |4/1^l/1. Eq- (8) can be 
approximated as [23] 

/a,n = 7" I d3pydil]p3 -p\[2Mr,P])Sf(r,p2 
47T J 

- foM sf(r.p) ~ Mr,p) Sf(r,Pi)]. (10) 

Equation (10) is the sum of three terms, each with a simple 
physical interpretation. The first term 2f0(r,pl)Sf(r,p2) is 
proportional to the rate that an atom in /0 scatters with an 
atom in Sf and one of the atoms scatters into the momentum 
state p. The second term f^r.p^Sfir.p) is proportional to 
the rate that atoms scatter out of Sf because of collisions 
with atoms in /0. The final term /0(r,p)<5/(r,p3) is the in- 
verse of the second process. 

Only atoms in the disturbance contribute to the interfer- 
ence signal. Therefore, once an atom scatters out of the dis- 
turbance it no longer contributes to the interference signal. 
As a result only the second term in Eq. (10) contributes to 
the loss of the interference signal and the collision integral 
Eq. (10) becomes 

'COM = v(r,p)[f0(r,p) -/(r ,/>)], (ID 
where the collision frequency v is given by the integral 

v(r,p) = (r\ d*p)\pi-p\f0(r,pT,). (12) 

Substituting the equilibrium distribution 

/o = 
l—n(r)e-»2>2T 

(2nT) 

into Eq. (12), the collision frequency Eq. (12) becomes 

(13) 

i>=-p(r)<rTV2K(\p\/\2T), 
IT 

(14) 

where 

K(& = | drrfOrr s\x\0\£+rf-2£T) cos Oe^r.   (15) 

The integral K(^) can be explicitly evaluated in terms of 
error functions. To remove the dependence of v on the coor- 
dinate r and momentum p, Eq. (15) will be replaced by its 
value a zero argument K= 1 and the density n will be re- 
placed by the averaged density of a gas thermodynamic equi- 
librium in a harmonic potential. The collision frequency, Eq. 
(12), becomes 

S3<rN 

(2n, 2 (16) 

where io=((ollu)2
LY

0 is the geometric average of the trap fre- 
quencies. In Sec. Ill it will be demonstrated that using Eq. 
(16) for the collision frequency yields accurate results when 
compared to a more complete description of the atomic col- 
lisions. 

For the rest of this paper, we will limit the discussion to 
the case of a cigar-shaped harmonic potential. The dimen- 
sionless trapping potential becomes 

V= [{<4x2 + <a\[(y - y0)2 + z2]}. (17) 

where u>\=t0o)L and to|=/0to. If the trap has frequencies 
a),= 2TTX 3 Hz and w, = 2TTX 300 Hz, the dimensionless trap 
frequencies for 87Rb are a>,[ = 10"4 and w' = 10"2. 

When the gas is close to thermodynamic equilibrium in a 
harmonic trap the density is 

KM 

1277'/')' 
,-VlT (18) 

where N is the number of atoms in the trap and V is the 
potential. Using Eqs. (7) and (18) the effective potential can 
be expanded to fourth order as 

Veff=U 
2gJo^N 

(2wT)312 V + 
2gtJ*N 

(2n)mT 3/2T-7/ -^ (19) 

The lowest-order mean-field contribution to the potential 
causes a small reduction of the trap frequency. Therefore, the 
oscillation period of atoms in the trap is weakly dependent 
on the number of trapped atoms. The next-higher-order con- 
tribution is a weak quartic contribution to the potential. This, 
and all higher-order terms, can be neglected when 

2goiiN 

(2TT)mT712 «1. (20) 

For example, if the trap contains 7X lfj6 87Rb atoms, in a 
trap with frequencies a>n=27rX3 HZ and to t = 27rX 300 Hz, 
and a temperature of 40 fxK (7"= 30), the left-hand side of 
Eq. (20) is about 6X 10~8. In this case, the quantric contri- 
bution to the potential can be neglected. 

The analysis of the operation of the interferometer will be 
limited to the case where the splitting and read lasers beams 
are aligned with the weak axis of the harmonic potential, 
which will be chosen to be the x direction. For definiteness, 
the rotation of the interferometer will be in the z direction 
and the trap will be moved in the v direction. An atomic 
cloud at temperature T remains in equilibrium if the center of 
the trap is translated adiabatically. The trajectory of the mov- 
ing trap y0(r) is adiabatic when 

dr 
< \7a> (21) 

where a>1 is the trap frequency in the y direction. 
When Eq. (21) is fulfilled, the equations of motion, Eqs. 

(5) and (6), can be recast in a one-dimensional form. The 
Wigner function is written as the product f{x,rL,p,p{) 
=f(x,p)F(r | ,/? |), where F(r , ,/?,) is the equilibrium distri- 
bution in the perpendicular direction, normalized to one, and 
f(x,p) is the nonequilibrium distribution in the parallel di- 
rection, normalized to the number of atoms in the trap. When 
the laser beams are on, the one-dimensional equation of mo- 
tion for the Wigner function is 
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± «*sin(x)[/(jc,p- 1/2)-/(*,/> + 1/2)].        (22) 
at 

The solution of Eq. (22) can be written in terms of Bessel 
functions of the first kind J,„ 

f(x,P,t) = 2 (- i)'jk(~)jM(~y«+2k%(x,p - in), 
ik 

(23) 

where  the  sum over k  and  /  runs  from  -<*>  to  *,  E 
=jdt'x(t') is the strength of the laser pulse, and 

/o = ;—; exP 
2TT7"    

r\      2T 

•> 2   1 

(24) 

is the equilibrium Wigner function at temperature T. In gen- 
eral Eq. (23) can be negative, because the resulting gas is in 
a nonclassical state. However, for high temperatures T> 1 
the negative parts of the Wigner function are negligible, and 
the gas may be treated classically. 

After the laser pulse is applied, the optical field is turned 
off and the one-dimensional equation of motion for the 
Wigner function becomes 

- + (p-ily0)^- + orx-^)j 
c)t dx dp I 

where the collision frequency v is given by Eq. (16). The 
left-hand side of Eq. (25) can be greatly simplified by intro- 
ducing the new coordinates 

x = x cos u)nt - — sin a>i/ + 
a>i. 

B(T)C0S0),|T, n( <M0( 

p' = o)\X sin w/ + pcos &>,[/+ Oo>n I  dry0(T)sin a>BT, 

,'=t. (26) 

In this new coordinate system, Eq. (25) becomes 

a 
;/=K/o-/>. df 

which has the general solution 

f(t)=f(0)e-"+f0, 

(27) 

(28) 

where /(0) is the initial Wigner function given by Eq. (23), 
/0 is the equilibrium Wigner function given by Eq. (24), and 
v is given by Eq. (16). 

To read out the accumulated phase, the atomic cloud is 
illuminated with a single off resonate laser beam. The light 
that is back scattered off of the cloud is mixed with a refer- 
ence beam [15,17]. By measuring the interference intensity, 
the amplitude of the scattered light can be determined. Using 
the Born approximation, it can be shown that the amplitude 
of the back-scattered light is proportional to [17] 

-J S=     dxdpe"f(x.p). (29) 

where / is the one-dimensional Wigner function. The quan- 
tity S will be referred to as the interference signal of the 
interferometer. 

In the new coordinate system, Eq. (26), the signal be- 
comes 

;=«-" I dxdpe i(.x cos tvt+plio sin ml '/. (30) 

where 

<f = nlcosajf    dt'yQ(t')cos wt' + sin tot \  dt'\0U')sin(ot' 

(31) 

is the phase shift due to the rotation of the interferometer. 
Substituting Eq. (28) into Eq. (30) yields 

S = Ne-H^(-i)"JkJ„+k 

y p-(T/2ui')[icos tot + n + 2/t)~+sin   a>f]+i(/i/2uiKin toi-it .     -T/2io2\ 

(32) 

The interference signal S is only nonzero when ; = 2/i7r/(u, 
where n is an integer or one-half integer. Expanding Eq. (32) 
near these points and taking the limit where T> or yields 

S = - 2Ne-"f-T?n-"''^J JkJk+] sin[U- + 1)^2],      (33) 

where r-t-lmtla),,. Equation (33) along with Eqs. (16) and 
(31) are the main analytical results of this paper. 

III. DISCUSSION 

Equation (33) will now be analyzed and optimal operating 
conditions for trapped thermal atom interferometers will be 
found. Additionally to confirm the results of the analytic 
model we will use a direct simulation Monte Carlo model 
(DSMC) of the interferometer [24]. 

Direct simulation Monte Carlo is accurate because the 
equation of motion after the laser pulse Eq. (6) is equivalent 
to the classical Boltzmann equation. Since the effect of the 
standing wave laser pulse on the cloud is nonclassical [Eq. 
(22)], DSMC can only be used to model the dynamics when 
the standing wave laser beams are off. To account for the 
laser pulse, the initial conditions for the DSMC model was 
set by Eq. (23). In regions where the initial Wigner function 
is negative /<0, the classical distribution of atoms was set 
to zero. This is valid when the temperature is much larger 
than the two-photon recoil temperature T> 1. 

For definitiveness, we specialize to the case where the 
trap is moved back and forth according to 
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FIG. 2. (Color online) The interference signal as a function of 
time near one trap period. The solid curve is Eq. (33) and the dots 
are the results of the DSMC code. 

>>o=-cos(tOnf), (34) 

where d is the dimensionless distance that the atomic cloud 
is displaced in the y direction. Our chip will displace the trap 
about 5 mm, for 87Rb the dimensionless displacement will be 
</=8X I04. 

After nil oscillations, the atoms scattered into the first 
order will enclose an area mid I (a and the accumulated 
phase shift is 

•and 
tp= 11. (35) 

To measure the rotation rate of the Earth, with a n phase 
shift in a trap with &>|=2irX3 Hz, the trap must be moved 
back and forth 3 times. The time that it takes for the inter- 
ferometer to measure a given phase shift does not depend on 
the parallel trap frequency. For example, the time that it takes 
to measure a IT phase shift tw is 

f„=- 
4TT 

Sid 
(36) 

To measure Earth's rotation, with a IT phase shift, the inter- 
ferometer must have a cycle time of about 1 second. To mea- 
sure a given rotation frequency, the bandwidth of the inter- 
ferometer can only be increased by increasing the distance 
that the atoms are displaced d. For the remainder of this 
paper only the interference signal will be discussed for the 
case where the phase shift <p is zero and when the trap is not 
moved in the y direction. 

Figure 2 shows the interferometer signal 5, which is pro- 
portional to amplitude of the back-scattered light, as a func- 
tion of time. The solid line in Fig. 2 is Eq. (33) for times 
close to the first oscillation period T=t-2nirlo>,| where n 
= 1, and with the parameters o-=0.2, wi = 10"4, o)| = 10"2, <p 
=0, N=l X 106, 3=1, and 7=30. The dots are the result of 
the DSMC, with each super particle representing 10 atoms 
and the signal averaged over 64 separate runs of the DSMC 
code. The error bars in all DSMC calculations are smaller 
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FIG. 3. (Color online) The maximum value of the interference 
signal as a function of perpendicular trapping frequency. The solid 
curve is found using Eq. (38) and the dots were extracted from a 
DSMC calculation. 

than the size of the dots shown in the figures. This figure 
demonstrates good agreement between the analytic result and 
our DSMC code. 

The shape of this signal illustrates the time and position 
varying amplitude of the density modulation echo relative to 
the probe laser. For times slightly less than one trap period 
T< 0, the nodes of the density modulation are located at the 
antinodes of the standing wave laser field. At precisely one 
trap period, the density modulation vanishes and the cloud 
returns to its initial density distribution. For times slightly 
larger than one trap period r>0. the nodes of the density 
modulation are located at the nodes of the standing wave 
laser field. 

For weak pulses 5 £ I, the interference signal, Eq. (33), 
can be approximately written as 

S = - Are -Trtl—lnwtta (37) 

where A=N'ZkJkJk+l(k+ 1). The two peaks in the signal oc- 
curs at the times r= ± 7~l/2. For 87Rb at 40 fiK the time 
between the maximum and minimum signal is about I /is. 
The magnitude at the peaks in the signal is 

N 
Speak _ " —1/2 exP\ - 

uy^aNn 

2
U2

TTT 
(38) 

where Eq. (16) was used. For the remainder of this section, 
Eq. (38) will be analyzed for several illustrative cases. Using 
this analysis, limits on the performance of the interferometer 
will be discussed. 

Figure 3 shows the maximum value of the interference 
signal as a function of perpendicular trapping frequency o>,, 
where all the other parameters are the same as in Fig. 2. The 
solid curve is found using Eq. (38) and the dots were ex- 
tracted from the DSMC calculation. This figure demonstrates 
excellent agreement between the analytic and DSMC models 
of the interferometer. The maximum interference signal is 
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FIG. 4. (Color online) The maximum value of the interference 
signal as a function of temperature. The solid curve is Eq. (38) and 
the dots were extracted from a DSMC calculation. 

observed for small values of the perpendicular trapping fre- 
quencies. This is because the density of the atoms decreases 
as the atoms are confined less tightly in the perpendicular 
direction. 

From Fig. 3, it is clear that the optimal value of perpen- 
dicular trapping frequency is the smallest value such that the 
movement of the trap remains adiabatic. The minimum trans- 
verse trap frequency can be estimated by using Eqs. (21) and 
(34). To remain adiabatic, the ratio between the transverse 
and perpendicular trapping frequencies must be 

wii      2\T' 
(39) 

where d is the maximum displacement of the trap in the 
perpendicular direction and 7" is the temperature of the gas. 

Figure 4 shows the maximum value of the interference 
signal as a function of the temperature T of the trapped gas. 
The remaining parameters are the same as Fig. 2. The solid 
curve is Eq. (38) and the dots were extracted from the DSMC 
calculation. There is still good agreement between the ana- 
lytic and DSMC models. 

Holding all other parameters constant, the interference 
signal becomes smaller as the temperature is reduced. This is 
because, in a harmonic potential, collision rate is inversely 
proportional to temperature. For the parameters used in Fig. 
4, the signal increases with temperature until T=60. For tem- 
peratures larger than T>(tO, the duration of the echo be- 
comes shorter and the amplitude of the density modulation is 
reduced. Using Eq. (38) it can be shown that the largest 
amplitude of back-scattered light occurs when the tempera- 
ture is 

T = 
2"V aNn 

TT 
(40) 

Equation (40) shows that the optimal temperature increases 
linearly with atom number. As the atom number increases, 
the signal-to-noise ratio of the detected signal decreases. The 
time between the maximum and minimum amplitude de- 
creases. The speed of the detection scheme places an upper 

40        50xl0-6 

FIG. 5. (Color online) The maximum value of the interference 
signal as a function of number of atoms in the trap. The solid curve 
is Eq. (38) and the dots were extracted from a DSMC calculation. 

limit on the temperature and therefore the lower limit on the 
signal-to-noise ratio. Analysis of the details of the detection 
scheme are beyond the scope of this paper and will be left to 
future work. 

The initial temperature of the atomic gas depends on the 
details of the laser cooling and loading of the gas into the 
trap. Although it is possible to experimentally vary the final 
temperature, it is easier to vary the number of trapped atoms. 
This can be done by changing the load time of the magneto- 
optical trap. Because of this, we believe that it is most useful 
to treat temperature T. and trap frequencies o>, and a>1 as 
constants and optimize the number of trapped atoms N. 

Figure 5 shows the maximum value of the interference as 
a function of number of trapped atoms A'. The solid curve 
was found using Eq. (38) and the dots were extracted from 
our DSMC code. The remaining parameters are the same as 
in Fig. 2. When the number of atoms in the gas is N<7 
X 106, the signal increases with increasing number. This is 
because as the number of atoms increases so does the amount 
of back-scattered light. When the total number of atoms in 
the gas is N>7X 106 the interference signal decreases be- 
cause the higher density increases the collision rate between 
the atoms in the gas. Using Eq. (38) it can be shown that, 
holding all other parameters constant, the maximum value of 
the interference signal for the number of atoms is 

N=- 
2mnT 

(41) 

For a trap with frequencies a>, = 27rX3Hz and U>L=2IT 

X 300 Hz, that traps Rb atoms at 40 fiK, the optimal num- 
ber of atoms for one trap period, is about 7 X |()h atoms. To 
measure Earth's rotation with at v phase shift, by displacing 
the trap by 5 mm, the atoms must oscillate 3 times in this 
trap and the optimal number of atoms is 2.2 X 106. 

IV. CONCLUSIONS 

In this paper we presented a simple analytic model of the 
dynamics of a trapped-atom interferometer that uses a single 
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Kapitza-Dirac pulse to modulate the atoms and the classical 
turning points of the trap to reflect them. The interferometers 
signal is read out by reflecting a single probe pulse off of the 
atoms and interfering the back-reflected light with a refer- 
ence beam. We presented a description of the collisions be- 
tween the atoms and showed that our simple model give 
quantitatively accurate results when compared to a DSMC 
model of the interferometer. Finally, we used our model to 
find the optimal temperature or number to maximize the per- 
formance of the interferometer. 

Although the analytic model presented in this paper spe- 
cialized to the analysis of a single Kapitza-Dirac pulse, the 
results of Sec. Ill easily generalize to multipulse interferom- 
eters [17,20]. To apply our model to interferometers that use 
gases above the BEC transition temperature but below the 

recoil temperature the momentum and spacial dependence on 
the collision frequency cannot be ignored and Eq. (12) must 
be used instead of Eq. (16). We believe that inclusion of the 
more complicated collision frequency will not dramatically 
change the results of this paper when describing a gas below 
the recoil temperature. 
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